

SKA SWG Update

Robert Braun, SKAO Science Director

18 June 2024

SKA Science Update

- Sensitivity Calculators, Array Simulator, Subarray templates (Sarrvesh Sridhar, Science-Operations)
- SKA-Low AA* Roll-out Optimisation
- Construction Update
- SKA Science Meetings
- Science Data Challenges
- SWG Collaboration Facilitation (Philippa)
- Reminders & Information
- AOB

SKA user tools - https://www.skao.int/en/science-users/ska-tools

Sensitivity calculators
 Array layout simulator
 Subarray templates
 library

https://www.skao.int/en/science-users/ska-tools

SKAO user tools: I. SKA Mid and Low sensitivity calculators

https://www.skao.int/en/science-users/ska-tools/493/ska-sensitivity-calculators

•

Sensitivity calculators -

https://www.skao.int/en/science-users/ska-tools/ska-sensitivity-calculators https://sensitivity-calculator.skao.int

• Accessibility is important for SKAO to ensure our tools can be used by the broadest possible user

base.

• Web interface is Web Content Accessibility Guidelines (WCAG) compliant

SKAO Sensitivity C	Calculator	Μ	ID LOW		SKAO Sensitivity	Calculator	MID LOW Advanced: OFF D ON	• •
Subarray Configuration * AA4	*	Number of Stations 512		٢	Observing Band * Band 1 (0.35 - 1.05 GHz)	We 10	ather (Precipitable Water Vapour) *)	≎ mm
Degrees Right Ascension *	Declination * 00:00:00.0		Minimum Elevation * 20	û deg	Subarray Configuration * AA4 13.5-m antennas only cover 0.58-1.015 GHz	Number of 15-m antennas 133	Number of 13.5-m antennas	0
Continuum				~	Degrees Right Ascension * 00:00:00.0	Declination * 00:00:00.0	Elevation * 45	
Zoom Window				~	Cantinuum			
Pulsar Search (PSS)					Continuum			~
				RESET	Zoom Window			~
Note: The theoretical sensitivity is computed procedure described in <i>Sokolowski et al.</i> (20)	d using direction, fre 022).	quency, and LST-dep	endent SEFD values fol	llowing the	CALCULATE			RESET

https://www.skao.int/en/science-users/ska-tools

© SKAO 2024 | Version 1.3.0

ubarray Configuration * A4		Number of Stations 512		\$
rees Right Ascension * 00:00:00.0	Declination * 00:00:00.0		Minimum Elevation * 20	≎ deg
Continuum				~
Zoom Window				~
Pulsar Search (PSS)				
CALCULATE				RESET

C

https://www.skao.int/en/science-users/ska-tools

Right Ascension * Declination * Minimum Elevation * 00:00:00.0 20 Continuum Zoom Window Pulsar Search (PSS)	barray Configuration * 44	.	Number of Stations 512		\$
Continuum Zoom Window Pulsar Search (PSS)	rees Right Ascension * 00:00:00.0	Declination * 00:00:00.0		Minimum Elevation * 20	≎ deg
Zoom Window Nulsar Search (PSS)					
Pulsar Search (PSS)	Continuum				~
	Continuum Zoom Window				~

© SKAO 2024 | Version 1.3.0

The first release of the sensitivity calculator supports the two imaging modes: continuum and zoom window Folded pulse sensitivity was recently added to Low More observing modes will be added in future releases.

*

Subarray Configuration * AA4	•	Number of Stations 512		$\hat{\cdot}$
Right Ascension * 00:00:00.0	Declination * 00:00:00.0		Minimum Elevation * 20	≎ deg
Continuum				~
Zoom Window				~
Pulsar Search (PSS)				
				RESET

© SKAO 2024 | Version 1.3.0

Note that the pulsar mode is not available in all subarray configurations.

SKA telescopes can only form tied-array beams on arrays with a maximum baseline length of 20 km.

*

Subarray Configuration * AA4 (core only)	*	Number of Stations 224		\$
egrees Right Ascension * 00:00:00.0	Declination * 00:00:00.0	9	Minimum Elevation * 20	≎ deg
Continuum				~
Zoom Window				~

Note: The theoretical sensitivity is computed using direction, frequency, and LST-dependent SEFD values following the procedure described in *Sokolowski et al. (2022)*.

© SKAO 2024 | Version 1.3.0

Pulsar mode becomes enabled depending on the choice of the subarray configuration

AO Sensitivity (Calculator		MID LOV	
Subarray Configuration * AA4	•	Number of Stations 512		٥
Provide the second seco	Declination * 00:00:00.0		Minimum Elevation * 20	û deg
Continuum				~
Zoom Window				~
Pulsar Search (PSS)				
CALCULATE				RESET

assemblies are represented. More subarrays will be added as we come up with subarray templates (more on this later in this talk)

At present, all array

© SKAO 2024 | Version 1.3.0

Subarray Configuration * AA4	Number 512	er of Stations	0
egrees Right Ascension * 00:00:00.0	Declination * 00:00:00.0	Minimum Elevation * 20	û deg
Continuum			~
Zoom Window			~
Pulsar Search (PSS)			
			DECET

Direction-, LST-, and frequencydependent SEFD as the source moves across the station beam response

SKA-Low sensitivity calculator: Continuum mode

ntegration Time *		
1	hours	Results
		 Weighted continuum sensitivity
		14.71 uJy/beam (2.71)†
Central Frequency *		Continuum confusion noise
200	MHz	2.69 uJy/beam
		Total continuum sensitivity
		14.96 uJy/beam
		Continuum synthesized beam-size
Continuum Bandwidth *		5.5" x 4.3"
300	MHz	Continuum surface-brightness sensitivity
		19.29 К
Spectral Resolution		Weighted spectral sensitivity
5.43 kHz (8.1 km/s)		1.99 mJy/beam (2.61)‡
		 Spectral confusion noise
		4.35 uJy/beam
Spectral Averaging *	Effective resolution	Total spectral sensitivity
2	10.86 kHz (16.3 km/s)	1.99 mJy/beam
		Spectral synthesized beam-size
		6.3" x 5.5"
		Spectral surface-brightness sensitivity
Image Weighting *	Robust Value	1743.11 К

‡ Weighting correction factor (single channel)

SKA-Low sensitivity calculator: Zoom mode

Integration Time * 1			hours	Results
Central Frequency * 200			MHz	Spectral spectral sensitivity 55.02 mJy/beam (2.61)‡ Spectral confusion noise 4.35 uJy/beam Total spectral sensitivity
Bandwidth, Spectral Reso 24.4 kHz (36.6 km/	olution * s), 14.1	Hz (21.2 m/s)	•	55.02 mJy/beam Spectral synthesized beam-size 6.3" x 5.5" Spectral surface-brightness sensitivity 48306.22 K
Spectral Averaging * 1	~	Effective Resolution 14.1 Hz (21.2 m/s)	# Weighting correction factor (single channel)
Image Weighting *	•	Robust Value * -1	-	

SKA-Low sensitivity calculator: Folded-pulse sensitivity

Pulse Period * 33	ms	Results Sensitivity	
Intrinsic Pulse Width * 0.004	ms		
Integration Time * 1	hours		
Central Frequency * 200	MHz		
Bandwidth 118.52	MHz		
Channel Width 14.5	kHz		
Dispersion Measure * 14	pc/cm ³		

This mode is available only in the Low calculator. Will be added to Mid in the next release.

We will also be adding single-pulse sensitivity estimates soon.

SKA-Low sensitivity calculator user guide

oarray Con \4	nfiguration *	•	Number of Stations 512		\diamond
rees Right	t Ascension * 00:00.0	Declination * 00:00:00.0		Minimum Elevation * 20	0 deg
Contin	uum				~
Zoom \	Window				~
Pulsar	Search (PSS)				
CALCU	JLATE				RESET

User documentation as a Google Document

Please leave comments on the document if something is unclear

*

https://www.skao.int/en/science-users/ska-tools

SKA-Low sensitivity calculator user guide

https://www.skao.int/en/science-users/ska-tools

Sensitivity calculators - plans for the next release

- Make the calculators RFI-aware
 - In the current implementation, no bandwidth is lost to RFI
- Single-pulse sensitivity
- Queryable API for ease of use in simulations
- Support other observing modes (ex. EoR)

• Are there functionalities the community would like us to add?

SKAO user tools: II. Staged delivery and array simulator

•

https://www.skao.int/en/science-users/ska-tools/494/ska-subarrays

•

Staged delivery and array assemblies

- Interferometers lend themselves to expansion
 - Build small, test/verify all the functionalities, and then scale
- Construction phase divided into five milestones or array assemblies (AA)
 - AA4 design baseline
 - AA* (staged delivery plan) corresponds to the funding that has been secured

Available to science community through Science Verification

	Milestones	Mid	Low
	AA0.5 4 Mid dishes 4 Low stations	2025 Oct	2024 Dec
r	AA1 8 Mid dishes 18 Low stations	2026 Sep	2025 Nov
-	AA2 68 Mid dishes 64 Low stations	2027 Sep	2026 Oct
	AA* (staged delivery) 144 Mid dishes 307 Low stations	2028 Jun	2028 Jan
	AA4 (design baseline) 197 Mid dishes 512 Low stations	TBD	TBD

Based on 2024 April Construction report

Memo and Software package

- Memo released late last year (<u>link</u>)
- Software interface to the antenna coordinates
- SKAO repository: ska_ost_array_config
 - Detailed documentation in a <u>Jupyter notebook</u>
- Allows you to
 - Configure a custom subarray
 - Simulate interferometric observations
 - Plot array layout and uv coverage
 - Export the layout to CASA for more comprehensive simulations
- Figure on the right plots baseline distribution and uv coverage of two Mid subarrays

https://www.skao.int/en/science-users/ska-tools

Software package: defining subarrays

```
from ska_ost_array_config.array_config import (
LowSubArray,
MidSubArray
```

```
low_aa2 = LowSubArray(subarray_type="AA2")
mid_aa2 = MidSubArray(subarray_type="AA2")
```

```
low_aastar = LowSubArray(subarray_type="AA*")
mid_aastar = MidSubArray(subarray_type="AA*")
```

```
low_aa4 = LowSubArray(subarray_type="AA4")
mid_aa4 = MidSubArray(subarray_type="AA4")
```

Creates Low and Mid subarrays in AA2 configuration

```
Creates Low and Mid subarrays
in AA* configuration
```

```
Creates Low and Mid subarrays
in AA4 configuration
```

Software package: defining subarrays

```
from ska_ost_array_config.array_config import (
LowSubArray,
MidSubArray
```

)

```
low_aa2 = LowSubArray(subarray_type="AA2")
mid_aa2 = MidSubArray(subarray_type="AA2")
```

low_aastar = LowSubArray(subarray_type="AA*")
mid_aastar = MidSubArray(subarray_type="AA*")

```
low_aa4 = LowSubArray(subarray_type="AA4")
mid_aa4 = MidSubArray(subarray_type="AA4")
```

```
low_custom = LowSubArray(
    subarray_type="custom",
    custom_stations="C*,E1-*"
)
mid_custom = MidSubArray(
    subarray_type="custom",
```

```
custom_stations="M*,SKA017"
```

Creates custom subarrays

Low: all core stations + stations in the E1 cluster

Mid: all 13.5m MeerKAT dishes + one 15m dish (SKA017)

Software package: plot array layout

Software package: plot snapshot (u,v) coverage

Software package: simulating an interferometric observation

from ska_ost_array_config.simulation_utils import simulate_observation from astropy.coordinates import SkyCoord from astropy import units from astropy.time import Time from ska ost array config.UVW import UVW

```
phase centre = SkyCoord("04:00:00 -75:00:00", unit=(units.hourangle, units.deg))
observation = simulate_observation(
 array config=MidSubArray(subarray type="AA*").array config,
 phase centre=phase centre,
 start time=Time.now(),
 duration=3600.0, integration_time=1,
 ref freg=1420e6, chan width=13.4e3, n chan=1000,
 horizon=20,
 freq undersample=100, time undersample=10)
uvw = UVW(observation, ignore autocorr=True)
```

- # Simulate an observation with SKA Mid in AA*
- # 1-hour scan with 1s time resolution
- # Frequency setup
- # Flagged if source is below the horizon (in deg)

Software package: simulating an interferometric observation

```
from ska_ost_array_config.simulation_utils import simulate_observation
from astropy.coordinates import SkyCoord
from astropy import units
from astropy.time import Time
from ska_ost_array_config.UVW import UVW
```

```
phase centre = SkyCoord("04:00:00 -75:00:00", unit=(units.hourangle, units.deg))
observation = simulate observation(
 array config=MidSubArray(subarray type="AA*").array config,
                                                                                     400
                                                                     # Simulate a
 phase centre=phase centre,
 start time=Time.now(),
 duration=3600.0, integration_time=1,
                                                                    # 1-hour sca
                                                                                     200
 ref_freq=1420e6, chan_width=13.4e3, n_chan=1000,
                                                                     # Frequency
                                                                    # Flagged if :
 horizon=20,
                                                                     # Undersam 🛐
 freq undersample=100, time_undersample=10)
                                                                                       0
uvw = UVW(observation, ignore autocorr=True)
from ska ost array config.UVW import plot_uv_coverage
                                                                                    -200
fig, axes = plot_uv_coverage(uvw)
                                                                                    -400
```

400

200

-400

-200

0

U (kλ)

*

Software package: simulations with CASA

low_custom.generate_casa_antenna_list("low.txt")

Generates a CASAcompatible antenna file

- The exported file is compatible with NRAO CASA simutils module
- We provide some CASA examples in a <u>Jupyter notebook</u>
- More detailed examples on <u>CASA documentation</u>

SKAO user tools: III. Subarray templates library

•

https://www.skao.int/en/science-users/ska-tools/543/ska-subarray-templates

•

Subarray templates library

- SKA telescopes can create up to 16 independent subarrays
- During the proposal submission stage, astronomers will pick the appropriate subarray from a template library
- First version of the subarray templates memo (+ simulation tool) was released last week
 - Based on a first round of consultation with the SWGs in 2023
 - This is just the first version.
 - Ample opportunities for more input from the community

SKA Low and Mid subarray templates

SKAO-TEL-0002380		Revision 01					
Classification:		UNRESTRICTED					
Document type:		REP					
Date:		2024-06-12					
Status:		DRAFT	DRAFT				
Role	Name	Designation	Affiliation	Signature	Date		
Author	Sarrvesh Sridhar	Operations Scientist	SKAO				
Author	Wendy Williams	Scientist	SKAO				
Author	Shari Breen	Head of Science Operations	SKAO				

https://www.skao.int/en/science-users/ska-tools

Subarray templates library

- Three types of subarrays in this version
 - Distance-based subarrays,
 - Similar/equal subarrays for concurrent largearea monitoring, and
 - Science-specific subarrays (e.g. for EoR, solar monitoring, ...)
- ~26 templates defined for Low and Mid
 - For both AA* and AA4
- All subarray templates have been incorporated into the array simulation tool mentioned earlier (ska_ost_array_config).

SKA Low and Mid subarray templates

SKAO-TEL-0002380		Revision 01						
Classification:		UNRESTRIC	UNRESTRICTED					
Document type:		REP	REP					
Date:			2024-06-12	2024-06-12				
Statu	s:		DRAFT	DRAFT				
Role		Name	Designation	Affiliation	Signature	Date		
Autho	or	Sarrvesh Sridhar	Operations Scientist	SKAO				
Autho	or	Wendy Williams	Scientist	SKAO				
Autho	or	Shari Breen	Head of Science Operations	SKAO				

Distance-based subarrays

• All SKA Low stations within a radius of 1.5 km from the array centre

Slide / 31

*

Equal/similar subarrays

• Split the entire array into N-equal/similar subarrays

*

Some requested subarray templates don't look good

• Needs further refinement. We have nevertheless included them to guide further conversation

Subarray templates library: feedback from the community

- Based on a first round of consultation with the SWGs
- First version out and we want to use it to drive the conversation with the community
- We have created a simple questionnaire <u>link</u> or scan the QR code below
 - Six open-ended questions
 - Feedback will help refine the templates (or add new ones)

Feedback on SKA subarray templates library

Links to the <u>SKA subarray templates memo</u> and the <u>simulation software</u> package.

sarrvesh.sridhar@skao.int Switch accounts)
Email ID (in case we need to contact your for further clarification) Your answer	
Do you imagine using any of the subarrays from the template list? If so, what are they and what is the science area? Your answer	
What further information might you need to better understand what subarray might fulfil your science needs?	

SKA user tools - https://www.skao.int/en/ska-tools

• Extensive documentation (see links on respective slides)

More user tools being developed.

Feedback/feature request to SKAO Science Operations: sciops@skao.int

- Would a similar/longer demo to a wider audience be useful?
 - We recently did one for members of the CoL SWG

SKA-Low AA* Roll-out Optimisation

- AA4 configuration consists of dense core (224 stations) plus 18 station clusters on each of three "spiral" arms
- AA4 station cluster is populated with 6 stations (total of 288)
- AA4 Station Processing:
 - Core Processing Facility (CPF) that can serve core plus remote clusters 1 – 4 on each arm
 - 36 Remote Processing Facilities (RPFs) that each serves one cluster 5 – 16 on each arm
- Only 18 RPFs (~700k€ each) in AA* budget

AA* - initial array for shared-risk science; AA4 – full SKA design baseline

SKA-Low AA* Roll-out Optimisation

- PSF quality of SKA-Low is strongly impacted by not populating each of the cluster locations: this will impact SKA-Low AA* science capability!
- Images below demonstrate A) Current roll-out, B) Current plus move 2 stations to clusters 1
 - 4 (no extra RPFs) and C) Move 2 stations to each cluster 1 16 (requires 18 extra RPFs)
- RMS sidelobe levels decline from 0.0086, to 0.0058 and 0.0024
- Engineering Change Proposal now approved for option B, since budget impact of option C too extreme to accommodate

Engineering Change Proposal to change the layout for AA*

SKA-Low AA* Roll-out Optimisation

- Engineering Change Proposal now approved for new AA* definition
 - Core station numbers and locations unchanged
 - Remote cluster station number preserved, but locations changed as below

AA* - BASELINE			
	# Sta. per Clust.		# Sta. per Clust.
S1		N/E1	
S2		N/E2	
S3		N/E3	
S4		N/E4	
S5		N/E5	
S6		N/E6	
S7		N/E7	
S8	6	N/E8	6
S9	6	N/E9	6
S10	6	N/E10	6
S11		N/E11	6
S12	6	N/E12	
S13		N/E13	
S14	6	N/E14	6
S15		N/E15	
S16	6	N/E16	6

AA* – Improved coverage				
	#Sta. per Clust.		#Sta. per Clust.	
S1	2	N/E1	2	
S2	3	N/E2	3	
S3	2	N/E3	3	
S4	3	N/E4	3	
S5		N/E5		
S6		N/E6		
S7		N/E7		
S8	6	N/E8	4	
S9	4	N/E9	4	
S10	6	N/E10	4	
S11		N/E11		
S12		N/E12		
S13	4	N/E13	4	
S14		N/E14		
S15	4	N/E15	4	
S16	4	N/E16	4	

Construction Update – AA0.5

SKA-Low AA0.5

4 Stations 2 x S8 1 x S9, S10

Antennas fully deployed on S8-1, S8-6, S9-2. Started on S10-3.

Data received by first two stations on S8

Slide credit: Angela Teale

AA0.5 S8-1, S8-6

AA0.5 S8-1, S8-6

Construction Update – AA0.5

SKA dish locations

First three SKA dishes now being erected on-site!

Dish Structure Construction

- Dishes #1 to #3 on site, Dish #1 30% complete. Dish #4 fully assembled in China, used as a test bed.
- Huge RFI testing efforts by SKAO and Contractors. Compliant design meeting MeerKAT specs. Qualification testing to SKA specification will follow.
- All AA0.5 Dishes being RFI tested, ensuring RFI integrity.

Dish #4 CETC54 in China

Dish #1 Construction in Karoo

Science Meetings

- <u>New Telescopes and major upgrades to existing telescopes</u>: URSI AT-RASC, 19-24 May, Gran Canaria, ES [RECENT]
- Cosmic Magnetism in the pre-SKA Era: 27-31 May, Kagoshima JP [RECENT]
- European Astronomical Society (EAS) 1-5 July Padova.
 - EAS SS31: The SKAO: pathway to science operations, 5 July
- IAU GA: 6-15 August, Cape Town.
 - SKAO Session 9 August, and various SKA-related Symposia
- East Asia SKA Workshop, week of November 18, Thailand
- <u>Cosmic Ecosystems in Radio & Optical</u> ESO-SKA, 9-13 Dec, near Perth, AU (abstract deadline June 20)
- SKA Science Conference, June 2025, Gorlitz Germany, see next slides

2025 SKAO Science Meeting

۲

 \bullet

•

۲

 \bullet

2025 Science Meeting overview

• Dates:

• 16th-22nd June 2025

• Location:

• Görlitz, soon to be the home of the brand new German Center for Astrophysics (Deutsches Zentrum für Astrophysik, DZA)

• Numbers:

- In person: ~300
- Virtual attendance to be supported for all sessions
- Themes:
 - Updates to the SKA Science Book
 - Noting the transition from SKAO commissioning to science verification and observing: "Observing with the SKAO" sessions

SOC members

SOC co-chairs Philippa Hartley Viola Tegethoff	Project Scientist, SKAO MPIfR	DZA, Stefa Micha
SWG representatives Marta Spinelli Joe Lazio Cath Trott Fatemeh Tabatabaei Eva Schinnerer Nicola Bellomo Neeraj Gupta Katie Mulrey	Cosmology Cradle of Life Epoch of Reionisation Extragalactic Continuum Extragalactic Line Gravitational Waves HI Galaxy High Energy Cosmic Particles	Shari
Tessa Vernstrom Ke Wang Bhal Chandra Joshi Rohit Sharma Patrick Woudt Jack Radcliffe	Magnetism Our Galaxy Pulsars Solar, Heliospheric and Ionosp Transients VLBI	oheric

DZA, MPIfR and SKAO

Physics

efan Wagner	Head of As
chael Kramer	Director, M
nari Breen	Head of So
endy Williams	Project Sci

Head of Astronomy, DZA Director, MPIfR Head of Science Operations, SKAO Project Scientist, SKAO

Venue: theatre now reserved

- 256 seats downstairs, plus 1st gallery row good view: ~300 in total
- Tiered (and comfortable!) seating
- Good acoustics
- Not set up for audio/visual by default: will be supported by SKAO IT team

Venues: parallel sessions

- Not possible to locate all parallel sessions in the same venue
 - Individual venues can accommodate up to four sessions in parallel
- Several other venues are located close together
- Eight rooms to be booked for parallel sessions
- All rooms to support virtual attendance

Science meeting programme

- Plenary sessions
 - Organised by broad Science theme
 - Plus "Observing with SKAO" special plenary session
- Parallel sessions
 - In order to facilitate SWG interaction and collaborations, organise by SWGs
 - Will also enable Operations to be able to tailor talks for different technical requirements
 - See Wendy's corner plot illustrating SWG overlaps will use this information to identity which sessions to run at the same time
 - Participants will be asked at registration to indicate priority of (up to three?) parallel sessions, in order to assign rooms (of differing sizes) to sessions
- Posters
 - 'Lightning' talks: aim to organise relatively early in the week in order to promote speakers' posters for viewing

SKAO Operations: Observing with SKAO

- Half day of plenary sessions dedicated to "Observing with the SKAO"
 - Detailed telescope capabilities
 - Operational policies
 - The user experience (tools, SRCNet etc)
 - Timeline to science (SV, cycle 0)
- SKAO Operations team will also hold interactive sessions with each SWG
 - Tailored capability presentations and Q&A sessions

Parallel sessions

- We have 14 SKAO Science Working Groups
 - Overlapping members between SWGs should help to group SWGs for parallel sessions

Number of members in common between each pair SWGs and total number of members in each SWG

2025 SKAO Science Book updates

۲

•

Science Book: overview

- This will be an updated version of the existing SKAO Science Book
- Some chapters may not have changed much; some will have evolved; some brandnew chapters based on new science cases
- Aim is two-fold:
 - Facilitate SWG-coordinated chapter updates
 - Opportunity for researchers to connect with and join the SWGs
- Provisional title: "Advancing Astrophysics II: Preparing for Science with the SKAO"
 - Aiming to convey the work to update the science book, and where we are in the project

Science Book: coordination of the call for chapters

- We will encourage chapter submission from all members of the scientific community
- Call for chapters can be advertised both within and outside SWGs
 - Within SWG: SWG chairs to invite proposals for intended contributions, in order to facilitate coordination
 - Outside SWG: the call for chapters will request authors to submit proposal to relevant working group chairs
- Draft chapter submissions will then be coordinated by SWG chairs: chairs can invite draft submissions based on internally-identified chapter updates and on proposals received
 - LaTeX template will be made available
 - Draft chapters submission will open from September, until end of January.
 - <u>Oxford Abstracts</u> for submissions
 - Free month-long trial available
- 2025 Science Meeting SOC will select draft chapters for presentation at the meeting
 - Talks (both plenary and parallel sessions) and posters
- Final chapter versions will be submitted for review after the meeting

Science Book: content

Book Sections:

- One section per broad science theme e.g. galaxy evolution, etc
 - Themes to be fully inclusive
 - Authors would be requested to tag their submission with the relevant SWG name(s)
- Overview chapter at the beginning of each section
- Synergies with other instruments to be highlighted within individual chapters

Goal of individual chapters:

- Self-contained description of a science application including background and motivation
 - Main focus of a chapter:
 - Demonstrate the science outcomes that are enabled by the capabilities of a particular component of the SKA design baseline, Array Assembly 4 (AA4)
 - Supplementary focus:
 - Document the extent to which scientific outcomes might be achieved by the end of staged delivery (AA*)
 - Document the types of enhancements to the design baseline that could further support the science goals
 - Also consider:
 - Highlight synergies with other instruments

Science Book: final submissions and publishing

- SWG chairs to suggest reviewers for individual chapters
- Editing by SWG chairs and SKAO Science Team
- Publish both hard copy and online versions
- Hard copy versions: could be printed as individual sections
 - Mindful of the environmental impact of physical books
- Online version: facility to update over time (as is possible on ArXiv, for example)

Timeline

- June 2024: Save the Date announcement and chapter proposals sought
- September 2024: paper drafts invited and submission platform open
- End January 2025: paper draft submission close
- January to mid-March: talk selection
- Mid March 2025: speaker notification
- Mid/late January 2025: registration open
- March 2025: early bird registration close
- May 2025: registration close
- June 16th 2025: meeting begins
- Second half of 2025: final book chapter reviews and publication

Next steps

- Based on feedback from SWG chairs, finalise plans for the call for book chapters
- Save the Date announcement (later this week) to include first official announcement of 2025 Science Meeting and Science Book update

Science Data Challenge 3b: EoR Inference

- Status:
 - All teams who have requested HPC resources have either received allocations or have joined waiting list in case additional resources become available
 - Teams who have received allocations are being set up
 - Final SDC3b datasets in production
 - Slight delay as we finalise the simulations
 - SDC3b 'data description document' will be shared soon

SWG Collaboration Facilitation

Confluence

- Provides a 'wiki' style solution to support information storage and sharing for multiple groups under one umbrella
- Proof of concept tests completed by SKAO IT team
- All co-chairs should now have access to this area. Please feel welcome to test and set up SWG areas
 - Once happy, we will roll out to all SWG members
 - Propose to give edit access to core SWG members only
 - Core group set-up/refresh might be required
 - Also looking at edit access for profile page for all members

Reminders & Information

۲

 \bullet

 \bullet

•

 \bullet

Outreach & Engagement

- <u>CONTACT</u> is the SKAO magazine aimed at the entire SKA community
- Ideas for articles for CONTACT are always welcome (email Tyler). These include:
 - Let's Talk About (Feature length ... science focussed)
 - Pathfinders & precursors. Short pieces on recent results
 - SKA-related events (e.g. SPARCS, etc)
 - any other news of SKA relevance (award/honours, job openings, ...)
- Encourage your SWG members to sign up

SKA Positions

- SKAO positions (HQ Manchester UK, Australia-Low, South Africa-Mid) LINK
- SARAO employee SKA positions (Cape Town, Canarvon) <u>LINK</u>
- CSIRO employee SKA positions (Perth, Geraldton) LINK

SKAO Speaker Series

<u>SKAO Speaker Series</u>

- series of interesting talks, accessible to all within the broader SKA community, covering a wide range of topics, from astronomy to physics, engineering, big data and computing, EDI, and more.
- Encourage your SWG members to sign up to give a talk (and consider giving a talk yourself).
- Talks recorded all available for reviewing via the <u>Speaker Series</u> page (2020+)

SKAO SKAO Speaker Series

My personal journey as a female astronomer of colour

Cherry Ng Permanent Astronomer Centre National de la Recherche Scientifique (CNRS) Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E) Ordens, France

10.00am UTC

This talk is a collection of reflections on my career: from X-ray binaries to exoplanets, from pulsars to Fast Radio Bursts and SETI; on the challenges of motherhood and how it shapes my personality, and on the search for my cultural identity moving through six countries.

Wednesday 13 March 2024

Click to access the Speaker Series talk here

SKAO SKAO Speaker Series

Establishing an Evolutionary Picture of Fast Radio Bursts

Di Li Chief Scientist - FAST

With HSAT, the largest single-dish telescope ever built, we have designed the Commensal Radio Astronomy FAST Survey (CRAFTS), which realizes, for the first lime at any major facility, simultaneous data recording of pulsar search, HI imaging, HI galaxies, and transients (FRB and SETI), CRAFTS has discovered ~200 pulsars, ~10 FRBs including the only persistently active repeater FRB 20190520B, and ~5000 d*2 HI images with 1% calibration consistency, 5-10 times better than what is available from Arecbio.

Based on CRAFTS, we derived a FRB event rate - 120K per day per 4pi. We find universal frequency-dependent depolarization among repeating FRBs, which can be well fitted by multipath scattering and a single free parameter sigma. BM that described the complexity of the magnetized environments of FRBs. We have published in 2021 the first complete energy distribution toward any FRB, which is clearly bimodal between 10-97 and 10-bit ongs such immodality towards and the second strain and the second strained between 10-97 and 10-bit ongs such immodality being obusity detected, I am proposing an evolutionary picture of FRBs, which aims to unify not only repeating FRBs, but most if not all non-respectives.

Tuesday 23 April 2024 11.00am UTC (12noon BST) Click to access the Speaker Series talk here

Construction Timeline

- **Target**: build the SKA Baseline Design (197 Mid dishes; 512 Low stations: AA4)
- Not all funding yet secured, therefore following Staged Delivery Plan (AA*)
- Develop the earliest possible working demonstration of the architecture and supply chain (AA0.5).
- Then maintain a continuously working and expanding facility that demonstrates the full performance capabilities of the SKA Design.

Milestone Event (earliest)		SKA-Mid	SKA-Low
AA0.5 4 dishes 4 stations		2025 Q4	2024 Q4
AA1	AA1 18 stations		2025 Q4
AA2 64 dishes 64 stations		2027 Q3	2026 Q4
Science Verification begins		2027+	2027+
AA*	144 dishes 307 stations	2028 Q2	2028 Q1
Operations Readiness Review		2028 Q3	2028 Q2
End of Staged Delivery Programme		2029 Q1	2029 Q1
Early Operations (Shared Risk)		2029+	2029+
AA4 (Design Baseline)	197 dishes 512 stations	TBD d April 2024 (Cons	TBD truction Report)

First Science Verification data release to the community expected in 2027

AA* - initial array for shared-risk science; AA4 – full SKA design baseline

Commissioning Timeline

- Basic imaging and Tied-Array Beams
- Off-line reduction
- Limited BW/N_{Chan}
- AA1
 - Plus multiple beams/sub-stations
- AA2
 - Plus pipeline reduction, more BW/ N_{Chan}
 - Science verification!

• AA*

- Full BW, N_{CHan}, zooms
- Shared Risk Cycle 0
- PI (and KSP) Proposals!

Any Other Business

News from SWG Chairs?

We recognise and acknowledge the Indigenous peoples and cultures that have traditionally lived on the lands on which our facilities are located.

www.skao.int/en/science-users

٠

٠